
ECE 174 Fall 2017

Supplemental Solutions to Homework 3

1. It is obvious that the rank of the matrix is 2 (as the two rows and the
first two columns are linearly independent). The two linearly independent
rows span the row space (i.e., they form a basis for the row space), which
is obviously 2 dimensional. The first two, linearly independent columns,
span the column space (i.e., they form a basis for the column space), which
is obviously 2 dimensional. The nullspace is obviously 1 dimensional and
spanned by the canonical coordinate vector eT1 (0 0 1)T so that a basis for
the nullspace is given by {e1}.

Meyer 5.1.8 (a) • To show ‖x‖1 ≥ ‖x‖2, we have,

‖x‖21 =

(
n∑

i=1

|xi|

)2

=

n∑
i=1

|xi|2 +
∑
i 6=j

|xi||xj | = ‖x‖22 + C

where C ≥ 0. So ‖x‖21 ≥ ‖x‖
2
2, i.e. ‖x‖1 ≥ ‖x‖2.

• To show ‖x‖2 ≥ ‖x‖∞, we have,

‖x‖22 =

n∑
i=1

|xi|2 ≥ max
j
|xj |2 = ‖x‖2∞

so ‖x‖2 ≥ ‖x‖∞.

(b) • To show ‖x‖1 ≤
√
n ‖x‖2, we have,

‖x‖1 = eT |x| ≤ ‖e‖2 ‖x‖2 =
√
n ‖x‖2

where e is the vector of all 1’s, and |x| is the vector whose ith
component is |xi|.

• To show ‖x‖2 ≤
√
n ‖x‖∞, we have,

‖x‖22 =

n∑
i=1

|xi|2 ≤
n∑

i=1

max
j
|xj |2 = nmax

j
|x|2j = n ‖x‖2∞

so ‖x‖2 ≤
√
n ‖x‖∞.
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• To show ‖x‖1 ≤ n ‖x‖∞, we have,

‖x‖1 =

n∑
i=1

|xi| ≤
n∑

i=1

max
j
|xj | = nmax

j
|xj | = n ‖x‖∞ .

8. Recall that we (and Meyer) define the inner product to be linear in the
second argument.1 Also recall that 〈x1, x2〉 = 〈x2, x1〉.

(a) 〈x1, αx2〉 = α 〈x1, x2〉 = α 〈x1, x2〉 = α 〈x2, x1〉 = 〈x2, αx1〉 =
〈αx1, x2〉.

(b) 〈α1x1 + α2x2, x〉 = 〈x, α1x1 + α2x2〉 = α1 〈x, x1〉+ α2 〈x, x2〉
= α1 〈x1, x〉+ α2 〈x2, x〉

Note that in part (b) we obtain the property of additivity in the first
argument as a special case (just take α1 = α2 = 1).

9. Recall that the operators A : X → Y, B : X → Y, and C : Y → Z are
linear and that the adjoint operator, A∗, is defined by

〈A∗x1, x2〉 = 〈x1, Ax2〉 .

You also need to recall the properties of the inner product (such as linearity
in the second argument) and the additional properties proved in Problem
1 above.

(a) 〈y, αAx〉 = 〈y,Aαx〉 = 〈A∗y, αx〉 = 〈αA∗y, x〉.
(b) 〈y, (A+B)x〉 = 〈y,Ax+Bx〉 = 〈y,Ax〉 + 〈y,Bx〉 = 〈A∗y, x〉 +
〈B∗y, x〉
〈A∗y +B∗y, x〉 = 〈(A∗ +B∗)y, x〉.

(c) The fact that (αA + βB)∗ = αA∗ + βB∗ follows immediate from
properties (b) and (a), in that order.

(d) 〈x,A∗y〉 = 〈A∗y, x〉 = 〈y,Ax〉 = 〈Ax, y〉.
(e) 〈z, CAx〉 = 〈C∗z,Ax〉 = 〈A∗C∗z, x〉.
(f) 〈A∗αy, x〉 = 〈αy,Ax〉 = α 〈y,Ax〉 = α 〈A∗y, x〉 = 〈αA∗y, x〉.
(g) 〈A∗(y1 + y2), x〉 = 〈y1 + y2, Ax〉 = 〈y1, Ax〉+ 〈y2, Ax〉 = 〈A∗y1, x〉+
〈A∗y2, x〉
= 〈A∗y1 +A∗y2, x〉.

(h) Linearity of A∗ follows from properties (g) and (f), in that order.

10. Recall that the inner–products are defined as,

〈x1, x2〉 = xH1 Ωx2 and 〈y1, y2〉 = yH1 Wy2 ,

1Whereas many other authors define the inner product to be linear in the first argument.
Of course, in the real vector space case the inner product is linear in both arguments so that
the distinction disappears.
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where Ω and W are hermitian (i.e., ΩH = Ω and WH = W ) and positive–
definite (and hence both are invertible). Note that in this case their in-
verses are also hermitian, positive–definite.

(a) 〈y,Ax〉 = yHWAx = yHWAΩ−1Ωx =
(
(Ω−1AHW )y

)H
Ωx =

〈
(Ω−1AHW )y, x

〉
.

(b) For r(A) = n, A has full column rank and it must be the case that
m ≥ n. Since A is possibly over–determined, we solve the least
squares problem by enforcing the geometric condition that y−Ax ∈
R(A)⊥ = N (A∗). This yields the normal equations,

A∗Ax = A∗y .

Because r(A) = n, the n × n matrix A∗A also has rank n and is
therefore invertible. (This fact is consistent with the nullspace of A
being trivial, so that the least–squares problem must have a unique
solution.) Thus, we have that

r(A) = n⇒ x̂ = (A∗A)−1A∗y ,

for any value of y. It must therefore be the case that

r(A) = n⇒ A+ = (A∗A)−1A∗ ,

where A∗ = Ω−1AHW as determined in Part (a). With W a full
rank hermitian matrix and r(A) = n, it is the case that AHWA is
invertible and as a consequence the pseudoinverse, A+, is independent
of the weighting matrix Ω,

r(A) = n⇒ A+ = (AHWA)−1AHW .

(c) For r(A) = m, A has full row–rank and therefore it must be the case
that n ≥ m. Note that A is onto, and therefore y = Ax is solvable
for all y. However, the system is possibly underdetermined, so we
want to look for a minimum norm solution. This requires that we
enforce the constraint that any solution to y = Ax must also satisfy
the geometric condition that x ∈ N (A)⊥ = R(A∗). This condition
is equivalent to,

x = A∗λ ,

for some vector λ.

This condition, together with the requirement that x be a solution to
y = Ax, yields,

AA∗λ = y .

Because r(A) = m, the m×m matrix AA∗ also has rank n and is invertible.
Thus,

λ = (AA∗)−1y
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which yields the result that

r(A) = m⇒ x̂ = A∗(AA∗)−1y ,

for all y. Thus,
r(A) = m⇒ A+ = A∗(AA∗)−1 .

With r(A) = m and Ω−1 a hermitian full–rank matrix, it is the case
that the m ×m matrix AΩ−1AH is invertible. With the fact that A∗ =
Ω−1AHW , this yields the fact that for r(A) = m, the pseudoinverse is
independent of the weighting matrix W ,

r(A) = m⇒ A+ = Ω−1AH(AΩ−1AH)−1 .
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